ENVIRONMENTAL PERFORMANCE ASSESSMENT IN THE CONTEXT OF PORT 4.0

Authors

  • Leonardo Vilela Steiner Engenheiro Sanitarista e Ambiental pela Universidade Federal de Santa Catarina (UFSC)Coordenador de Meio Ambiente na EC Projetos
  • Tainara Cristina Silveira Graduanda de Engenharia Sanitária e Ambiental na Universidade Federal de Santa Catarina (UFSC) Estagiária de Meio Ambiente na EC Projetos
  • Tiago Buss Mestre em Engenharia de Transportes pela Universidade Federal de Santa Catarina (UFSC) Diretor na EC Projetos

DOI:

https://doi.org/10.59306/reen.v15e2022161-194

Keywords:

Porto 4.0, Big Data, Avaliação de Desempenho Ambiental, Gestão Ambiental Portuária, Indicadores Ambientais

Abstract

As well as in other industries ports and terminals have evolved, entering in a stage of digital transformation and adoption of practices linked to the Industry 4.0 framework. Starting from this, the concept of Port 4.0 was born, which seeks to implement technologies that increase and automate the performance of tasks and enable greater integration of information and processes, such as Big Data, Iot, cloud computing etc. The adoption of these technologies leads to benefits to the port sector such as: increased competitive advantages, gains in sustainability and advances in intermodality between transport modes. Although this issue is currently a hot topic in the sector, the application of Industry 4.0 concepts in the port segment is still recent and little discussed when it comes to socio-environmental management. In this sense, this paper sought to evaluate the implementation of a Port Environmental Performance Assessment system based on the concepts of Port 4.0, combining available technologies, creation of environmental indicators and compliance with applicable legal requirements. As a result, a layout proposal was obtained, segmented into three main consecutive work flows: Planning, IoT/Big Data and Business Intelligence and Analytics. First, the environmental license and its respective environmental conditions were considered, since they represent the environmental aspects most prone to cause negative impacts. Then, the technologies available for automating the parameters studied were listed, proceeding to build an environmental database. The final stage is materialized with the definition of indicators and targets that allow a more effective control of compliance with environmental conditions. In addition, the information obtained can also be displayed in interactive interfaces for internal use or for presentation to environmental/regulatory bodies. In conclusion, despite the socio-environmental theme being incipient in the Port 4.0 context and it’s current technological limitations, there is a potential to start the automation process in this segment.

References

ACCIARO, M.; RENKEN, K.; EL KHADIRI, N.. Technological change and logistics development in european ports. European Port Cities in Transition, p. 73-88, 2020. DOI: 10.1007/978-3-030-36464-9_5

ACETO, G.; PERSICO, V.; PESCAPÉ, A. Industry 4.0 and Health: internet of things, big data, and cloud computing for healthcare 4.0. Journal Of Industrial Information Integration, [S.L.], v. 18, p. 100129, jun. 2020. Elsevier BV.

http://dx.doi.org/10.1016/j.jii.2020.100129.

ARUNACHALAM, D.; KUMAR, N.; KAWALEK, J. P. Understanding big data analytics capabilities in supply chain management: unravelling the issues, challenges and implications for practice. Transportation Research Part E: Logistics and Transportation Review, [S.L.], v. 114, p. 416-436, jun. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.tre.2017.04.001.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). ABNT ISO 14031: Gestão ambiental - Avaliação de desempenho ambiental - Diretrizes. Rio de Janeiro, RJ: ABNT, 2015. 44 p.

BALINT, A. O.; TOMA, M. How does business intelligence solutions can streamline and influence transport networks?. Procedia Economics and Finance, v. 20, p. 59-64, 2015. Elsevier BV. https://doi.org/10.1016/S2212-5671(15)00047-7

BIZAGI. Bizagi Modeler. 2021. Disponível em: https://www.bizagi.com/pt/plataforma/modeler. Acesso em: 18 ago. 2021.

BORDELEAU, F.; MOSCONI, E.; DE SANTA-EULALIA, L. A. Business intelligence and analytics value creation in Industry 4.0: a multiple case study in manufacturing medium enterprises. Production Planning & Control, v. 31, n. 2-3, p. 173-185, 2020. https://doi.org/10.1080/09537287.2019.1631458

BRASIL. Agência Nacional de Transportes Aquaviários (ANTAQ). Índice de Desempenho Ambiental (IDA). Disponível em: http://portal.antaq.gov.br/index.php/meio-ambiente/indice-de-desempenho-ambiental/. Acesso em: 06 jul. 2021.

BRASIL. Agência Nacional de Transportes Aquaviários (ANTAQ). Resolução nº 2.650 de 26 de setembro de 2012. Aprova os instrumentos de acompanhamento e controle de gestão ambiental em instalações portuárias. Diário Oficial da União. Disponível em: http://www.suape.pe.gov.br/images/publicacoes/legislacao/21._Res.ANTAQ_2650_2012.pdf. Acesso em: 06 jul. 2021.

BRASIL. Conselho Nacional do Meio Ambiente (CONAMA). Resolução CONAMA nº 257 de 19 de dezembro de 1997. Disponível em: https://www.icmbio.gov.br/cecav/images/download/CONAMA%20237_191297.pdf. Acesso em: 10 ago. 2021.

BRASIL. Ministério da Infraestrutura. Plano Nacional de Logística Portuária (PNLP): Diagnóstico. Brasília, DF, 2019. 213 p. Disponível em: https://antigo.infraestrutura.gov.br/images/2020/03/2.09.pdf. Acesso em: 26 ago. 2021.

BRASIL. Secretaria dos Portos (SEP). Plano Nacional de Logística Portuária (PNLP): Infográfico dos objetivos, indicadores, metas e ações estratégicas. LabTrans/UFSC. Disponível em: https://www.gov.br/infraestrutura/pt-br/assuntos/politica-e-planejamento/politica-e-planejamento/plano-nacional-de-logistica-portuaria-pnlp. Acesso em: 06 jul. 2021.

CAPOTE, G. Guia para formação de analistas de processos – BPM. v. 1. Rio de Janeiro: Gart Capote, 2011.

CHEN, H.; CHIANG, R. H. L.; STOREY, V. C. Business intelligence and analytics: From big data to big impact. MIS quarterly, p. 1165-1188, 2012. https://doi.org/10.2307/41703503

CHEN, J. et al. Constructing governance framework of a green and smart port. Journal of Marine Science and Engineering, v. 7, n. 4, p. 83, 2019.

CUNHA, A. U. Mapeamento de processos organizacionais na UnB: caso Centro de Documentação da UnB - CEDOC. 2012. 66 f., il. Monografia (Especialização em Gestão Universitária)—Universidade de Brasília, Brasília, 2012. Disponível em: https://bdm.unb.br/handle/10483/4191. Acesso em: 18 ago. 2021.

DARBRA, R. M. et al. A procedure for identifying significant environmental aspects in sea ports. Marine pollution bulletin, v. 50, n. 8, p. 866-874, 2005. Elsevier BV. https://doi.org/10.1016/j.marpolbul.2005.04.037.

DARBRA, R. M. et al. Survey on environmental monitoring requirements of European ports. Journal of Environmental Management, v. 90, n. 3, p. 1396-1403, 2009. Elsevier BV. https://doi.org/10.1016/j.jenvman.2008.08.010.

DONG, X.; GANG, X.; YUANTAO, L.; XIUJIANG, G.; YISHENG, L. Intelligent ports based on Internet of Things. Proceedings Of 2013 Ieee International Conference On Service Operations And Logistics, And Informatics, [S.L.], p. 292-296, jul. 2013. IEEE. http://dx.doi.org/10.1109/soli.2013.6611428.

EUROPEAN SEA PORTS ORGANISATION (ESPO). About. 2021. Disponível em: https://www.ecoports.com/about. Acesso em: 16 jul. 2021.

FIGUEIREDO, E. J. A.; VALOIS, N. A. L.; MARINHO, M. M. O. Desafios e oportunidades dos indicadores de desempenho ambiental da Agência Nacional de Transportes Aquaviários para portos organizados marítimos: uma análise sob a percepção dos gestores ambientais portuários. Revista Eletrônica de Gestão e Tecnologias Ambientais, v. 4, n. 2, p. 155-168, 2016. Disponível em: https://periodicos.ufba.br/index.php/gesta/article/view/14425. Acesso em: 28 jun. 2021.

FONSECA, A.; SÁNCHEZ, L. E.; RIBEIRO, J. C. J. Reforming EIA systems: a critical review of proposals in brazil. Environmental Impact Assessment Review, [S.L.], v. 62, p. 90-97, jan. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.eiar.2016.10.002.

GHOBAKHLOO, M.; FATHI, M.; IRANMANESH, M.; MAROUFKHANI, P.; MORALES, M. E.. Industry 4.0 ten years on: a bibliometric and systematic review of concepts, sustainability value drivers, and success determinants. Journal Of Cleaner Production, [S.L.], v. 302, p. 127052, jun. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.jclepro.2021.127052.

GOVINDAN, K; CHENG, T. C .E..; MISHRA, N.; SHUKLA, N. Big data analytics and application for logistics and supply chain management. Transportation Research Part E: Logistics and Transportation Review, [S.L.], v. 114, p. 343-349, jun. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.tre.2018.03.011.

GUBBI, J.; BUYYA, R.; MARUSIC, S.; PALANISWAMI, M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, [S.L.], v. 29, n. 7, p. 1645-1660, set. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.future.2013.01.010.

JAIN, S.; SHARMA, S. Application of data warehouse in decision support and business intelligence system. In: 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT). IEEE, 2018. p. 231-234. DOI: 10.1109/ICGCIoT.2018.8753082

MEROLA, V. F. M. Os portos na nova economia global: uma proposta de gestão ambiental estratégica para a promoção da sustentabilidade e da saúde em cidades portuárias. 2017. Tese de Doutorado. Universidade de São Paulo. Disponível em: https://www.teses.usp.br/teses/disponiveis/6/6140/tde-09022018-171955/en.php. Acesso em: 12 jul. 2021.

MOLAVI, A.; LIM, G. J.; RACE, B. A framework for building a smart port and smart port index. International journal of sustainable transportation, v. 14, n. 9, p. 686-700, 2019. https://doi.org/10.1080/15568318.2019.1610919

MOROS-DAZA, A.; AMAYA-MIER, R.; PATERNINA-ARBOLEDA, C. Port Community Systems: A structured literature review. Transportation Research Part A: Policy and Practice, v. 133, p. 27-46, 2020. https://doi.org/10.1016/j.tra.2019.12.021

PAROLA, F. et al. Digital technologies and business opportunities for logistics centres in maritime supply chains. Maritime Policy & Management, p. 1-17, 2020. https://doi.org/10.1080/03088839.2020.1802784

PORT OF ROTTERDAM. Port of Rotterdam puts Internet of Things platform into operation. 2019. Disponível em: https://www.portofrotterdam.com/en/news-and-press-releases/port-rotterdam-puts-internet-things-platform-operation. Acesso em: 16 jul. 2021.

PORT TECHNOLOGY. Use of big data in the maritime industry. [S. L.], 2018. Disponível em: https://www.patersonsimons.com/wp-content/uploads/2018/06/TMS_SmartPort_InsightBee_Report-to-GUIDE_01.02.18.pdf. Acesso em: 09 jul. 2021.

PUIG, M.; PLA, A.; SEGUÍ, X.; DARBRA, R. M. Tool for the identification and implementation of Environmental Indicators in Ports (TEIP). Ocean & Coastal Management, [S.L.], v. 140, p. 34-45, maio 2017. Elsevier BV. http://dx.doi.org/10.1016/j.ocecoaman.2017.02.017.

PUIG, M.; WOOLDRIDGE, C.; DARBRA, R. M. Identification and selection of environmental performance indicators for sustainable port development. Marine Pollution Bulletin, v. 81, n. 1, p. 124-130, 2014. Elsevir BV. https://doi.org/10.1016/j.marpolbul.2014.02.006

PUIG, M.; WOOLDRIDGE, C.; CASAL, J.; DARBRA, R. M. Tool for the identification and assessment of Environmental Aspects in Ports (TEAP). Ocean & Coastal Management, [S.L.], v. 113, p. 8-17, ago. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.ocecoaman.2015.05.007.

REDDY, C. S.; SANGAM, R. S.; RAO, B. S.. A survey on business intelligence tools for marketing, financial, and transportation services. In: Smart intelligent computing and applications. Springer, Singapore, 2019. p. 495-504. DOI: 10.1007/978-981-13-1927-3_53

REY, A.; PANETTI, E.; MAGLIO, R.; FERRETTI, M. Determinants in adopting the Internet of Things in the transport and logistics industry. Journal Of Business Research, [S.L.], v. 131, p. 584-590, jul. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.jbusres.2020.12.049.

ROOS, E. C.; NETO, F. J. K. Tools for evaluating environmental performance at Brazilian public ports: Analysis and proposal. Marine pollution bulletin, v. 115, n. 1-2, p. 211-216, 2017. https://doi.org/10.1016/j.marpolbul.2016.12.015

RÜBMANN, M.; LORENZ, M.; GERBERT, P.; WALDNER, M.; JUSTUS, J.; ENGEL, P.; HARNISCH, M.. Industry 4.0: the future of productivity and growth in manufacturing industries. [S. L.]: Boston Consulting Group (Bcg), 2015. 20 p. Disponível em: https://image-src.bcg.com/Images/Industry_40_Future_of_Productivity_April_2015_tcm9-61694.pdf. Acesso em: 21 jun. 2021.

SCIENCESOFT. 5 Best Big Data Databases. 2021. Disponível em: https://www.scnsoft.com/analytics/big-data/databases. Acesso em: 26 ago. 2021.

SILVA, L. C. S.; FERREIRA, D. H. L. Índice de desempenho ambiental (IDA): avaliação do desempenho ambiental dos portos brasileiros. Revista Brasileira de Iniciação Científica, v. 7, n. 3, p. 80-94, 2020. Disponível em: https://periodicos.itp.ifsp.edu.br/index.php/IC/article/view/1603. Acesso em 28 jun. 2021.

TIJAN, E; JOVIć, M.; AKSENTIJEVIć, S.; PUCIHAR, A. Digital transformation in the maritime transport sector. Technological Forecasting And Social Change, [S.L.], v. 170, p. 120879, set. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.techfore.2021.120879.

TRIVELLI, L.; APICELLA, A.; CHIARELLO, F.; RANA, R.; FANTONI, G.; TARABELLA, A. From precision agriculture to Industry 4.0. British Food Journal, [S.L.], v. 121, n. 8, p. 1730-1743, 5 ago. 2019. Emerald. http://dx.doi.org/10.1108/bfj-11-2018-0747.

VÁCLAV, C. et al. Utilization of Business Intelligence Tools in Cargo Control. Transportation Research Procedia, v. 53, p. 212-223, 2021. Elsevier BV.

https://doi.org/10.1016/j.trpro.2021.02.028

VALENCIAPORT. The Port of València installs two new environmental quality and control cabins. 2021. Disponível em: https://www.valenciaport.com/en/the-port-of-valencia-installs-two-new-environmental-quality-and-control-cabins/. Acesso em: 16 jul. 2021.

VALOIS, N. A. L. Proposição do uso de indicadores ambientais na avaliação de desempenho de portos brasileiros. 2009. Dissertação de Mestrado. Universidade Federal de Pernambuco. Disponível em: https://attena.ufpe.br/handle/123456789/5369. Acesso em: 06 jul. 2021.

VILLELA, C. S. S. Mapeamento de processos como ferramenta de reestruturação e aprendizado organizacional. 2000. 182 f. Dissertação (Mestrado) - Curso de Engenharia de Produção, Centro Tecnológico, Universidade Federal de Santa Catarina, Florianópolis, 2000. Disponível em: https://repositorio.ufsc.br/handle/123456789/78638. Acesso em: 18 ago. 2021.

WANG, Y.; SARKIS, J. Emerging digitalisation technologies in freight transport and logistics: current trends and future directions. Transportation Research Part e: Logistics and Transportation Review, [S.L.], v. 148, p. 102291, abr. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.tre.2021.102291.

XU, Li da; XU, Eric L.; LI, Ling. Industry 4.0: state of the art and future trends. International Journal Of Production Research, [S.L.], v. 56, n. 8, p. 2941-2962, 9 mar. 2018. Informa UK Limited. http://dx.doi.org/10.1080/00207543.2018.1444806.

YANG, Y.; ZHONG, M.; YAO, H.; YU, F.; FU, X.; POSTOLACHE, O. Internet of things for smart ports: technologies and challenges. IEEE Instrumentation & Measurement Magazine, [S.L.], v. 21, n. 1, p. 34-43, fev. 2018. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/mim.2018.8278808.

YAU, K. A.; PENG, S.; QADIR, J.; LOW, Y.; LING, M. Towards Smart Port Infrastructures: enhancing port activities using information and communications technology. IEEE Access, [S.L.], v. 8, p. 83387-83404, 2020. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/access.2020.2990961.

ZARZUELO, I.; SOEANE, M. J. F.; BERMðDEZ, B. L. Industry 4.0 in the port and maritime industry: a literature review. Journal Of Industrial Information Integration, [S.L.], v. 20, p. 100173, dez. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.jii.2020.100173.

Published

2022-07-29

Issue

Section

Artigos Científicos